Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 74(2): 280-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23452278

RESUMO

The majority of land plants live in symbiosis with arbuscular mycorrhizal fungi from the phylum Glomeromycota. This symbiosis improves acquisition of phosphorus (P) by the host plant in exchange for carbohydrates, especially under low-P availability. The symbiosome, constituted by root cortex cells accommodating arbuscular mycorrhizal fungal hyphae, is the site at which bi-directional exchange of nutrients and metabolites takes place. Uptake of orthophosphate (Pi) in the symbiosome is facilitated by mycorrhiza-specific plant Pi transporters. Modifications of the potato Pi transporter 3 (StPT3) promoter were analysed in transgenic mycorrhizal roots, and it was found that the CTTC cis-regulatory element is necessary and sufficient for a transcriptional response to fungal colonization under low-Pi conditions. Phylogenetic footprinting also revealed binary combination of the CTTC element with the Pi starvation response-associated PHR1-binding site (P1BS) in the promoters of several mycorrhiza-specific Pi transporter genes. Scanning of the Lotus japonicus genome for gene promoters containing both cis-regulatory elements revealed a strong over-representation of genes involved in transport processes. One of these, LjVTI12, encoding a member of the SNARE family of proteins involved in membrane transport, exhibited enhanced transcript levels in Lotus roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Down-regulation of LjVTI12 by RNA interference resulted in a mycorrhiza-specific phenotype characterized by distorted arbuscule morphology. The results highlight cooperative cis-regulation which integrates mycorrhiza and Pi starvation signaling with vesicle trafficking in symbiosome development.


Assuntos
Lotus/metabolismo , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Lotus/genética , Proteínas de Plantas/genética , Interferência de RNA , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia
2.
Curr Opin Plant Biol ; 12(4): 500-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19576840

RESUMO

The arbuscular mycorrhiza (AM) is a symbiosis between most terrestrial plants and fungi of the ancient phylum Glomeromycota. AM improves the uptake of water and mineral nutrients, such as phosphorus (P) and nitrogen (N), of the host plant in exchange for photosynthetically fixed carbon. Successful colonization and a functional interaction between host plant and mycobiont are based upon exchange of signaling molecules at different stages of symbiosis development. Strigolactones, a novel class of plant hormones, are secreted by plant roots stimulating presymbiotic growth of AM fungi. Fungi release soluble signaling molecules, the enigmatic 'Myc factors', that activate early symbiotic root responses. Lysophosphatidylcholine is a lipophilic intraradical mycorrhizal signal triggering plant phosphate transporter gene expression late in AM development through a P-controlled transcriptional mechanism. This enables uptake of orthophosphate released from the AM fungus.


Assuntos
Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Transdução de Sinais/fisiologia , Simbiose/fisiologia , Interações Hospedeiro-Patógeno , Lactonas/química , Lactonas/metabolismo , Modelos Biológicos , Estrutura Molecular , Micorrizas/metabolismo , Raízes de Plantas/metabolismo
3.
Plant J ; 54(6): 1115-27, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18315538

RESUMO

The active endogenous dTph1 system of the Petunia hybrida mutator line W138 has been used in several forward-genetic mutant screens that were based on visible phenotypes such as flower morphology and color. In contrast, defective symbiotic phosphate (P(i)) transport in mycorrhizal roots of Petunia is a hidden molecular phenotype as the symbiosis between plant roots and fungi takes place below ground, and, while fungal colonization can be visualized histochemically, P(i) transport and the activity of P(i) transporter proteins cannot be assessed visually. Here, we report on a molecular approach in which expression of a mycorrhiza-inducible bi-functional reporter transgene and insertional mutagenesis in Petunia are combined. Bi-directionalization of a mycorrhizal P(i) transporter promoter controlling the expression of two reporter genes encoding firefly luciferase and GUS allows visualization of mycorrhiza-specific P(i) transporter expression. A population of selectable transposon insertion mutants was established by crossing the transgenic reporter line with the mutator W138, from which the P(i)transporter downregulated (ptd1) mutant was identified, which exhibits strongly reduced expression of mycorrhiza-inducible P(i) transporters in mycorrhizal roots.


Assuntos
Mutagênese Insercional/métodos , Micorrizas/metabolismo , Petunia/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Clonagem Molecular , Elementos de DNA Transponíveis , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Petunia/metabolismo , Petunia/microbiologia , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Regiões Promotoras Genéticas , Simbiose
4.
Proc Natl Acad Sci U S A ; 101(16): 6285-90, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15075387

RESUMO

Arbuscular mycorrhizae are ancient symbioses that are thought to have originated >400 million years ago in the roots of plants, pioneering the colonization of terrestrial habitats. In these associations, a key process is the transfer of phosphorus as inorganic phosphate to the host plant across the fungus-plant interface. Mycorrhiza-specific phosphate transporter genes and their regulation are conserved in phylogenetically distant plant species, and they are activated selectively by fungal species from the phylum Glomeromycota. The potato phosphate transporter gene StPT3 is expressed in a temporally defined manner in root cells harboring various mycorrhizal structures, including thick-coiled hyphae. The results highlight the role of different symbiotic structures in phosphorus transfer, and they indicate that cell-cell contact between the symbiotic partners is required to induce phosphate transport.


Assuntos
Evolução Biológica , Fungos/fisiologia , Proteínas de Transporte de Fosfato/genética , Simbiose , Fungos/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...